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Executive Summary 
 
Vision Statement: An integrated research approach will guide the effective development of diagnostic 
technologies, disease management systems, genomic resources, and crop germplasm exhibiting durable 
resistance to Sclerotinia sclerotiorum. Strategic deployment and use of these resources will help sustain the 
competitiveness of U.S. canola, pea, lentil, chickpea, common bean, soybean, and sunflower producers in 
domestic and global markets.  
 
Introduction: The Strategic Plan for the National Sclerotinia Initiative 2013-2017 provides programmatic 
transparency to all sectors of the agricultural value-chain and gives the research community a foundation 
for an integrated research approach for mitigating this devastating disease. The performance measures 
outlined in the Strategic Plan are relevant to the current needs of U.S. agriculture. Each performance 
measure defines the actions that will be taken to solve the problem, describes what is promised or will be 
produced, and provides a mechanism for peer review and assessment of research progress. The current 
document, Meeting Strategic Milestones of the National Sclerotinia Research Initiative for 2013 provides an 
interim accounting of how the research community has addressed the goals and objectives the plan, and 
provides the basis for rating overall program performance on an annual basis. This document and 
information regarding the governance and activities of the National Sclerotinia Research Initiative may be 
accessed at: http://www.ars.usda.gov/Research/docs.htm?docid=20317&page=3 

 

 

Rating Summary: 

 
 

 

 

2013 2014 2015 2016 2017

Total Accomlishments 43
Total Milestones 79

Achievement Rating (%) 54.4

Total Projects 21
Accomplishments / project 2.0
Total Publications 266
Germplasm/Varieties released 41
Achievement Rating: # cited accomplishments/ # publiched milestones *100

number of accomplishment citations

Sclerotinia Initiative Research Progress Evaluation

http://www.ars.usda.gov/Research/docs.htm?docid=20317&page=3
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Distribution of Accomplishments across Strategic Plan 
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2013 2014 2015 2016 2017
Allele specific DNA markers for yielding ability

PM 3.2 Genetic and physical maps for Sclerotinia resistance. 
Compilation of genotypic data from mapping populations
Improved genetic maps for Sclerotinia resistance genes 1

Consensus genetic map for Sclerotinia resistance genes
Core sets of markers for disease resistance
Core sets of markers for quality traits
Core sets of markers for agronomic traits
Place candidate genes on consensus genetic map

3.3 Characterize gene models for pathology & resistance.
Standardized annotation of maps among crop species.
Transcriptomic, proteomic & metabolomic annotation of QTL 1

Biological mechanisms for resistance, such as: oxalic acid 2

Gene atlas with a comprehensive list of all expressed genes.
Identification of specific genes within QTL

3.4 Genome mapping and allelic analysis through GWAS.
High resolution exome maps of QTL
Specific alleles that mediate Sclerotinia resistance.
GWAS studies of phenotypic variation in disease resistance. 3

Haplotype maps correlated with genetic variation for resistance. 1

Allele specific markers for pyramiding genes   
PM 3.5 Develop improved resistance with biotechnology.

Inventory validated resistance genes, promoters, & constructs
Transcription factors and elements of gene regulation
Functional tests in model plants to determine candidate genes 3

Efficacy of transformed genes on defense control 2

Genome editing to modify resistance to Sclerotinia
Crop germplasm transformed with putative anti-fungal genes.

Disease Management & Crop Production 
PM 4.1:  Optimize fungicide application programs. 

Collection of S. sclerotiorum  isolates for fungicide sensitivity 1

Economic return of fungicide applications 1

Management guides for fungicides 1

Spray technologies for fungicide performance 
Ttiming of fungicide applications. 1

PM 4.2:  Develop bio-control alternatives. 
Efficacy of current bio control agents
Novel antagonists of S. sclerotiorum
Management guides for bio fungicides

PM 4.3:  Develop disease-warning systems.  
Models that calculate risk of disease development
Effect of tillage practices on Sclerotinia survival;
Economic loss models
Define risk levels for crop-specific fungicide decisions

PM 4.4:  Optimize cultural practices for disease management. 
Variety selection based on disease reaction 
Publication of disease management information  
Epidemiological information on disease development. 

Total Accomlishments 43 ..
Total Milestones 79

Achievement Rating (%) 54.4
Total Projects 21

Accomplishments per project 2.0
Publications 266

Germplasm lines released 41

Milestone
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2013 Accomplishment Highlights supported by publications 
Application of advanced technologies: 
Metabolic engineering of pathways associated with plant defense (common bean) 
Genome editing for specific genes (canola) 
Sequence independent amplification for RNA viruses that have infected Sclerotinia genomes 
SoySNP6K Illumina BeadChip for genotyping arrays (soybean) 
RNA-seq for transcriptome analysis of expressed genes (bean, soybean, canola, pea, pathogen) 
GWAS for SNP markers that define haplotypes and high density genetic maps (soybean, bean, canola) 
RAD-seq for SNP discovery in sunflower 
MAGIC for nested association studies with interspecific crosses (common bean) 
Reference genome sequences for Sclerotinia, soybean, Glycine latifolia, common bean 
Transgenic germplasm that overexpresses phytoalexins (soybean) 
Fast neutron induced mutagenesis (common bean, soybean) 
High-through put resequencing for Genotype x Sequencing in breeding populations 
Antisense transformation of the AOx2b gene for functional analysis of oxalate in disease prevention 
Regulatory control of selected viral genes that are present in the genome of Sclerotinia isolates 
Mechanisms of Sclerotinia sensitivity to commercial fungicides 
Biocontrol applications mediated by controlled expression of endogenous secondary metabolites 
Pathogen race specific DNA-markers (chickpea) 
High-density QTL maps for candidate gene discovery (pea, soybean, sunflower, bean) 
Molecular diagnostics for production decision guides (sunflower) 
Cytogenic maps based on BAC/BIBAC for genome sequence guided breeding selection (sunflower) 
  
 
Released germplasm and varieties: 
USPT-WM-12 (pinto bean) 
RioRojo (small red bean) 
ND 307 (pinto bean) 
Eldorado (pino bean) 
Lynx (winter pea) 
XRAV 40-4 (balck bean) 
Beniquez (white bean) 
Shiny Black Pearl (blackbean) 
8 high disease resistant germplasm (soybean) 
US14H BR6 (common bean) 
Cornell 607-612) (common bean) 
Lareat (pinot) 
Stampede (pinto) 
TARS-Tep22 (bean) 
TARS-Tep32 (bean) 
1 unnamed resistant germplasm (pea) 
HA R9 (sunflower) 
Essex (lentil) 
Seminis Seed cvs: (Hercules, Titan, Pony Express, Valentino, Secretariat, Green Valley, Zapata, Ulysses, 
Spartacus, Firstmate, Weapon, Gold Dust), BA1001, BA0999, SV1003, Sybaris) 
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Milestones for Sclerotinia Research - 2013  
 

Crop Germplasm Resources & Genetics   
 
Goal 1: Identify novel germplasm sources with higher levels of field resistance effective 
against a wide range of aggressive Sclerotinia sclerotiorum isolates.  
 
PM 1.1:  Identify new sources of resistance in plant germplasm.   
• Germplasm accessions of canola, chickpea, lentil, pea, and sunflower, and wild crop 

relatives with resistance to S. sclerotiorum are identified and used in breeding programs.  

1.1.21.01 Scientists at USDA-ARS Fargo, ND, North Dakota State University, Central Lakes 
College- Staples, MN, and University of Nebraska discovered a large group (260) of USDA 
Plant Introductions with superior resistance to head rot and stalk rot. These lines were used to 
identify candidate genes and in genome wide association mapping. This germplasm also 
exhibits resistance to Phomopsis stem canker. One gene family was associated with basal stalk 
rot resistance. Existing populations and breeding lines for stalk and head rot resistance were 
advanced. Current lines also have resistance to multiple races of rust and downy mildew. 
Several inbred lines that pyramid resistance with crop quality characteristics will be released. 

• Improved phenotypic methods for identifying and validating resistance to S. sclerotiorum, 
in accessions from USDA and World germplasm collections.  

1.1.19.01 Scientists at North Dakota State University amassed a diverged collection of 380 
accessions of Brassica napus from 29 countries to screen for resistance to Sclerotinia stem rot 
in canola. These accessions were genotyped using an Illumina sequencing (GBS) platform. A 
library of single nucleotide polymorphisms (SNPs) was created. Disease scores and SNP 
markers will be used identify QTL associated with the Sclerotinia stem rot resistance genes.  

1.1.21.02 Scientists at USDA-ARS Fargo, ND, North Dakota State University, Central Lakes 
College- Staples, MN, and University of Nebraska tested the ascospore production method 
developed by retired pathologist Dr. Michael Boosalis at three laboratories (Fargo, ND, 
Carrington, ND; Lincoln, NE; and Scottsbluff, NE) using six bean isolates of Sclerotinia. The 
original isolate (NEB-274) and one other produced ascospores with no preconditioning other 
than scarification, while four isolates failed to produce any apothecia. This method, while 
extremely effective, may be applicable only to some fungal isolates. 

PM 1.2: Transfer and adapt new sources of resistance genes into useful plant 
germplasm (pre-breeding).   
 
• Common bean breeding lines derived from interspecific crosses with effective resistance 

in multiple environments and against a range of aggressive isolates. 
 

• Canola, chickpea, lentil, pea, soybean and sunflower lines selected from un-adapted 
accessions with confirmed resistance to Sclerotinia stem rot and evaluated for 
agronomic traits.  
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1.2.14.01 USDA-ARS scientists at Fargo ND developed sunflower germplasm with excellent 
stalk and head rot resistance in six amphiploids and wild perennials. Amphiploids resistant to 
stalk and head rot were crossed with HA 410, backcross progenies with 2n=34, and 
BC2F4/BC3F3 families were evaluated in replicated trials in 2009-2013. Interspecific F1 
progeny were produced between stalk rot resistant hexaploids H. californicus and H. 
schweinitzii and HA 410. Backcross progenies of H. californicus with HA 410 were evaluated in 
replicated trials in 2009-2013. Crosses between NMS HA 89 and head rot resistant H. 
maximiliani and H. nuttallii were advanced to BC1F4 and BC2F4 families for replicated field 
trials in 2009-2013. Stalk rot resistant diploid perennials H. maximiliani, H. giganteus, and H. 
grosseserratus were crossed with HA 410 and their BC1F4/ BC2F3 families were evaluated in 
replicated field trials in 2009-2013. Follow-up replicated field tests for head rot and greenhouse 
tests for stalk rot resistance in 2013 indicated moderate to good resistance, further confirming 
successful gene introgression.  

• Sunflower breeding lines with enhanced resistance to Sclerotinia stalk rot derived from 
wild annual and perennial species via interspecific hybridizations.  Alien chromosome 
addition stocks characterized and used for resistance breeding.   

1.2.14.02 USDA-ARS scientists at Fargo ND conducted a molecular tracking study that 
indicated a higher frequency of gene introgression from diploid perennials than from hexaploid 
or interspecific amphiploids. A genomic in situ hybridization (GISH) technique distinguishing 
chromosomes of the perennials and cultivated sunflower was developed. New crosses using H. 
strumosus, H. tuberosus, and H. decapetalus were made in 2013 and are being backcrossed 
with HA 410. Helianthus hirsutus, H. salicifolius, H. occidentalis, H. divaricatus, and H. 
resinosus were crossed with HA 410, HA 451, or NMS HA 89 in 2012 to further diversify the 
pool of resistance genes and to increase the probability of identifying useful major resistance 
QTLs. Their early generation field seed was increased in 2013, which will provide more than 
400 new families for replicated field test, in 2014.  

PM 1.3:  Genetic analysis and discovery of quantitative trait loci (QTL) that confer 
resistance to Sclerotinia   

• Bi-parental breeding populations generated in canola, common bean, pea, soybean, and 
sunflower for identification of QTL associated with Sclerotinia resistance from diverse 
sources.  

1.3.06.02 Scientists at USDA-ARS Prosser WA, Oregon State University and North Dakota 
State University examined phenotypic interactions among major QTL conferring partial 
resistance to WM in common bean. A RI population consisting of 150 lines in F5:7 was 
developed. The resistant parent is USPT-WM- 312, a pinto germplasm line with a strong 
combination of field and greenhouse resistance. Great Northern Orion was the highly 
susceptible parent. This population is used to understand the nature of the greenhouse 
resistance based on multiple QTL (epistasis) and genetic mapping to understand how this 
unique resistance is being manifested in this new pinto germplasm line. 

• Advanced backcross populations in sunflower and MAGIC populations in common bean 
used to identify, validate and fine map QTL identified from exotic sources including 
interspecific populations. 

 1.3.15.01 Scientists at North Dakota State University, Michigan State University and USDA-
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ARS Prosser WA evaluated inoculation techniques for screening pea germplasm for Sclerotinia 
resistance. F1 populations among elite breeding lines or varieties and accessions showing 
increased levels of resistance were grown in the field in the summer of 2013 in space planted 
plots. Significant F2 populations were generated and will be used to study the genetics of the 
resistance mechanisms. Development of recombinant inbred line populations from previous 
crosses is progressing.  

• Use of genome-wide association mapping and linkage analysis to identify and map QTL 
with major and minor effects in common bean and sunflower. 

1.3.13.01 USDA-ARS scientists at Fargo ND developed populations to evaluate Genotype x 
Sequencing (GS) methods in sunflower for Sclerotinia, yield, and agronomic traits. DNA 
samples were taken from 308 experimental maintainer and restorer lines with testcross 
evaluation data in 2009 (308), 2010 (304), 2011 (137) and 2012 (281). Testcrosses were made 
to ‘RHA 377’ if the experimental was a maintainer, and ‘CMS HA 412HO’ if the experimental 
was a restorer. Testcross performance data for each phenotype in each year were obtained 
from one or two environments. No genotypes other than check hybrids were evaluated in more 
than one year; however, the self-pollinated progenies of selected lines were evaluated in 
sequential years. Released breeding lines, progenitors of current breeding germplasm were 
whole genome sequenced (10x coverage). GBS data will be aligned to existing whole genome 
scaffolds and parsed into flat data files using internal lab protocols at University of Colorado.    

• Breeder friendly QTL-linked DNA markers generated in canola, chickpea, common bean, 
lentil, pea, soybean, and sunflower and validated for application in marker-assisted 
breeding. 

1.3.16.01 Scientists at USDA-ARS Prosser WA, Oregon State University and North Dakota 
State University identified and validated white mold (WM) resistance QTL from P. coccineus and 
transferred them into common bean. During 2012-2013, 26 F4 RI populations of crosses 
between the P. coccineus derived experimental lines (WMG762, WMG 836, WMG853, 
WMG861, WMG897, WMG903, WMG904, WMM 619, WMM688, WMG 308, WMG327, 
WMG377, and WMG388) and two susceptible common bean parents (Great Northern „Spinel‟ 
and OSU 5613) were increased. RI populations with WMG904 crossed to G122 and NY6020 
were advanced to the F6 generation. These 28 individual populations are intended for validating 
and fine mapping P. coccineus derived WM resistance QTL.  

• Define metabolic mechanisms associated with Sclerotinia resistance QTL in common 
bean, soybean, and sunflower. 

1.3.12.01 Scientists at Colorado State University and Delaware State University identified 
resistant (A195) and susceptible (Sacramento) Andean bean lines that exhibit metabolic 
phenotypes associated with response to white mold. Metabolites from healthy tissue directly 
adjacent to the necrotic lesion were characterized using UPLC-MS and GC-MS non-targeted 
metabolomic workflows. 144 metabolites varied between A195 and Sacramento. This 
experiment showed: (i) reduction in many amino acids and saccharides, but increase in 
asparagine, (ii) increased abundance of bean phytoalexins and other secondary metabolites, 
(iii) variation in hormones and other molecules involved in cell signaling, (iv) increased 
abundance of many organic acids, (v) increased abundance of ureides, and decrease of a 
ureide precursor, (vi) variation in cell wall and glycerolipid composition. Some of the molecular 
phenotypes have been previously observed as a plant response to necrotrophic fungi (e.g. 
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asparagine) however, many changes are novel and appear specific to legumes, such as 
gibberellin A37 glycoside, soyasaponin, and phaseolin. 
 

PM 1.4: Pyramid white mold resistance in plant germplasm using traditional and 
genome sequence guided approaches, and release germplasm lines and cultivars with 
enhanced resistance.  
 
• Canola, chickpea, lentil, and pea lines with resistance to Sclerotinia and a broad portfolio 

of desirable agronomic traits developed and released. 

1.4.05.01  Scientists from North Dakota State University developed 15  B. napus lines with 
resistance to S. sclerotiorum from parental line NEP 63, and 60 F6 lines derived from the cross 
between Ames 26628 and PI458940 that are considered resistant to S. sclerotiorum. However, 
these materials and the advanced breeding lines were not planted in Langdon as planned. All 
materials were planted in Prosper late in the summer with no misting system. No disease 
developed. The elite breeding lines are currently being evaluated in greenhouse conditions 
using the petiole inoculation technique. Double haploid production from B. rapa accessions 
PI426281 and Ames 21738 is under way. At the same time, crosses between these lines have 
been made in the greenhouse and F2 lines will be advanced.  

• Breeding lines and cultivars of pinto and other bean market classes released with 
broadly effective resistance pyramided from diverse sources - Andean, Middle American, 
and secondary gene pools (P. coccineus), in combination with desirable agronomic 
traits.   

1.4.22.01 Scientists at the University of Nebraska, USDA, ARS-Prosser WA, Michigan State 
University, Colorado State University, University of Idaho, Cornell University, Seminis Seeds, 
Oregon State University, and North Dakota State University identified sources of partial 
resistance to S. sclerotiorum in secondary gene pool derived as well as in Phaseolus vulgaris 
adapted dry and snap bean lines. A standardized screening test using the modified Petzoldt and 
Dickson scale was developed for rating the greenhouse straw test, and the CIAT scale was 
used for rating all field screening tests. 2012-13 greenhouse tests provided evidence for 11 lines 
with large cream, pinto, great northern, small red and cranberry seed types with intermediate 
levels of WM resistance. 9 entries had WM resistance ranging from similar to Bunsi (avoidance) 
to resistance similar to G122, the moderately resistant check. A snap bean, a pinto line, a bayo 
line and six kidney lines with WM resistance were released. New lines with high WM resistance 
from wide interspecific crosses are now in seed increases for greenhouse screening 

• Interaction of combined QTL on level of disease reaction in common bean and soybean 
elucidated. 

1.4.23.02 Scientists at Michigan State University evaluated two greenhouse methods, the spray-
mycelium method and the drop-mycelium method, for large scale evaluations of soybean 
germplasm for resistance to Sclerotinia stem rot  Two new QTLs were identified from PI 
391589A and PI 391589B. Five resistance sources PI 089001, PI 153259, PI 437764, PI 
548404, and PI 548312 were tested for QTLs for resistance to Sclerotinia stem rot. Nine 
reported QTLs were found in these resistance sources. 432 lines were evaluated with over 
52,000 SNP DNA markers in an attempt to identify DNA markers closely linked to the disease 
resistance genes. The three new resistance sources, PI 416805, PI 361059B, and FC 030233, 
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have been used as sources of resistance. They were crossed with high yielding lines with other 
desirable traits such as resistance to soybean cyst nematode, phytophthora root rot, and 
sudden death syndrome. The progenies from these crosses are currently at various generations 
from F1 to F4. 
 

• Establish disease nurseries for characterizing field and greenhouse resistance to all 
pathogenic forms of Sclerotinia in common bean, soybean and sunflower. 

 
• At least one released soybean breeding line with Sclerotinia resistance from multiple 

sources of resistance as verified by QTL-linked markers, including high yield, and 
resistance to other diseases or insects.  
 

1.4.23.01 Scientists at Michigan State University released the soybean cultivar Skylla and a 
germplasm AxN-1-55 with partial resistance to Sclerotinia stem rot. Skylla, AxN-1-55, three lines 
from Dr. Craig Grau from University of Wisconsin, and five soybean plant introductions (PIs) 
with partial resistance to Sclerotinia stem rot were used as resistant parents to improve soybean 
for resistance to the disease. Four progeny lines, E06161, E06164, E06240, and E08310, with 
yield similar to the yield check IA2094 and with resistance similar or better than the resistant 
check S19-90 were developed. 
 

• Commercial & experimental release of sunflower lines exhibiting both Sclerotinia head 
rot and stalk rot resistance.  

 
 

Pathogen Biology & Mechanisms of Resistance  
 
Goal 2:  Understand Sclerotinia sclerotiorum biology and development 
 
PM 2.1: Characterize migration/population structure and ecological variability of genotypes.  
 

• Understanding the interaction of pathogen with environmental factors such as temperature 
and light. 

 
• Identification of biotypes with resistance to new fungicide chemistry 

 
• Characterization of the genetics of fungicide resistance 

 
• Characterization of ecological types in the population.  

 
• Associate activity in Sclerotinia with specific genetic markers.  
 

PM 2.2: Characterize virulence/aggressiveness within the population, identify isolates for 
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use in screening, and monitor durability of host resistance.   
 

• Documented reactions of a broad spectrum of isolates on new sources of host resistance. 

2.2.22.02 Scientists at the University of Nebraska, USDA, ARS-Prosser WA, Michigan State 
University, Colorado State University, University of Idaho, Cornell University, Seminis Seeds, 
Oregon State University, and North Dakota State University collected 366 isolates of S. 
sclerotiorum from nine bean production regions in the USA as well as regions in Mexico and 
France: all were genotyped with 16 polymorphic microsatellites and by UPGMA cluster analysis. 
These isolates exhibited no significant differences in aggressiveness using the straw test under 
greenhouse conditions. However, there were significant differences in aggressiveness between 
screening nurseries in MN, MI, ND, NE and CA. There was also significant variation in 
aggressiveness between isolates collected in Red River Valley compared to Trail County. When 
isolates collected from nurseries and grower fields within a state were compared, MI isolates did 
not differ in aggressiveness. However, ND isolates compared in the same way were significantly 
different, as were those from WA where the year of collection also was a significant factor in 
aggressiveness variation. 

• Diverse collection of isolates with a broad spectrum of aggressiveness and other 
characteristics 

2.2.22.03 Scientists at the University of Nebraska, USDA, ARS-Prosser WA, Michigan State 
University, Colorado State University, University of Idaho, Cornell University, Seminis Seeds, 
Oregon State University, and North Dakota State University constructed a dendrogram using 16 
polymorphic microsatellites and UPGMA (unweighted pair-group method with arithmetic mean) 
cluster analysis that defined 20 gene clusters. The 20 clusters were similar for the three control 
hosts in the screening nurseries with isolates for Beryl, Bunsi and G122 respectively. State or 
country origin isolates exhibited variability in total clusters and distribution between the 20 
clusters. Grower field isolates were also variable when compared by state origin, where isolates 
were distributed in only 10 clusters. 

• Identification of new sources of host resistance using a new set of aggressive isolates 

2.2.08.01  Scientists at USDA-ARS Urbana, IL, University of Illinois and North Dakota State 
University are testing the hypothesis that viruses infecting Sclerotinia sclerotiorum have the ability 
to reduce severity of white mold disease in crops. Viruses infecting S. sclerotiorum were identified 
in total RNA extracted from pure cultures of 138 S. sclerotiorum field isolates and analyzed by 
high-throughput sequencing. Twenty novel S. sclerotiorum viruses were identified, more than 
doubling the number of viruses known to infect S. sclerotiorum. One of the viruses had a double-
stranded RNA (dsRNA) genome, three had negative-sense single-stranded RNA [ssRNA(-)] 
genomes and 16 had positive-sense ssRNA [ssRNA(+)] genomes. No viruses with DNA genomes 
were detected. Among the viruses with ssRNA(+) genomes, mitochondria-infecting viruses were 
the most numerous. Isolates of S. sclerotiorum were confirmed to be infected with the viruses by 
real-time reverse-transcriptase polymerase chain reaction using primers specific for each of the 
new viruses.  

2.2.08.02 Scientists at USDA-ARS Urbana, IL, University of Illinois and North Dakota State 
University genome sequenced selected viruses to facilitate production of infectious cloned copies 
of the viruses. Four of the viruses selected for further analysis included a ssRNA(-) virus that is 
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related to the plant pathogen Maize mosaic virus and other arthropod-transmitted viruses that 
infect plants and animals. The S. sclerotiorum isolate infected with the ssRNA(-) virus grew more 
slowly and produced fewer sclerotia in culture than isolates not infected with the virus. A large 
(>14 kb) dsRNA virus infecting S. sclerotiorum related to Cryphonectria hypovirus 1 reduced the 
virulence of the chestnut blight fungus. The S. sclerotiorum isolate infected with the new hypovirus 
produced dense mycelial mats with extensive hyphae branching in culture. Finally, two viruses (<5 
kb) ssRNA(+) genomes were identified as Diaporthe ambiqua RNA virus 1 and a group of soil-
borne plant viruses in the family Tombusviridae. The S. sclerotiorum isolates infected with the 
viruses did not show obvious phenotypes. However, the two viruses may be more suitable than 
non-encapsidated dsRNA viruses for development of persistent biological fungicides. 

• Criteria for testing virulence/aggressiveness on specific hosts and tissue types.  

  
PM 2.3: Identify environmental and genetic factors involved in myceliogenic and 
carpogenic germination of sclerotia.  
 

• Identification of host factors that may enhance myceliogenic germination. 
 
2.1.11.01 Scientists at USDA ARS Urbana IL and the University of Illinois demonstrated growth 
suppression of S. sclerotiorum by varied levels of the native soybean phytoalexin glyceollin and the 
non-native phytoalexins resveratrol and pterostilbene in vitro and in vivo. Transgenic soybean 
plants with genes enabling biosynthesis of non-native phytoalexins resveratrol or pterostilbene 
have been developed for evaluation of resistance to S. sclerotiorum in planta.  
 
2.3.10.01 Scientists at USDA, ARS Fargo ND and North Dakota State University conducted 
exploratory experiments using Sclerotinia sclerotiorum strain 1980 to: 1) examine the effect of a 
synthetic strigolactone called GR24 on germination, and 2) examine the effect of growth and 
conditioning temperatures on germination. GR24 incorporated into water agar or PDA media did 
not increase the onset or rate of myceliogenic germination relative the control. A new strain sun-87 
was obtained as an additional source of experimental material. 
 

• Genetic control and required environmental conditions governing the processes of 
myceliogenic and carpogenic germination 

 
• Determination of common and unique genetic events that lead to carpogenic germination in 

different Sclerotinia spp. 

PM 2.4:  Identify genes that are functional at specific growth and infection stages of 
Sclerotinia.   

• Transcriptomic, genomic, and metabolomic data bases for growth stage-specific genes and 
infection-related genes from both host and pathogen. 

2.4.03.01 Scientists from Michigan State University, North Dakota State University and Dow 
AgroSciences, LLC investigated the host-pathogen interaction of Pisum sativum and Sclerotinia 
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sclerotiorum and reported the first gene expression profiling data via RNA-seq on a susceptible 
(Lifter) and a partially resistant (PI240515) line inoculated with S. sclerotiorum. Comparative 
analysis of differential expressed genes revealed five genes encoding: two putative precursors of 
peroxidases (Psat_118093 and Psat_116532), a chalcone synthase (Psat_107301), a ferulate 5-
hydroxylase (Psat_117663) and a β-1,3-hydrolase (Psat_111657) that are linked to host 
defenses. These genes were up-regulated in the partial resistance PI240515 line and influence 
production of phytoalexins and cell wall lignin. 540 SSR markers were validated for selection of 
these traits. 

• Improved gene annotation using transcriptomic data. 

2.4.03.02 Scientists from Michigan State University, North Dakota State University and Dow 
AgroSciences, LLC characterized unique expressed genes during pea-S. sclerotiorum interaction. 
The results showed that PI240515 pea line had a higher number of specific unique genes than 
Lifter that were associated with cell wall, death, immune system and regulation of transcription 
functions. PI240515 seemed to favor programmed cell death (PCD) related events, as a means to 
impede the spread of the disease. 
 

• Genetic control of differential infection processes of the Sclerotinia spp. in response to 
different host plants 

2.4.17.01 Scientists at North Dakota State University resequenced genomic (g) DNA from the 
mycelium of 120 isolates from a collection of S. sclerotiorum from 22 hosts and 25 states. Two 
genotype-by-sequencing (GBS) libraries were constructed containing 50,000 -100,000 barcoded 
and sequestered sequence reads for each S. sclerotiorum isolate. Double digested gDNA was 
size selected (200 bp fragments) and ligated to barcoded Ion Torrent sequencing adaptors 
specific to each isolate. The barcoded and pooled libraries (40 multiplexed isolates per library) 
were sequenced on three separate Ion Torrent 318 microprocessor chips. The sequencing 
reactions yielded 15.6 million sequences at an average of 160 bases per read for a total of ~2.5 
billion bases. The sequence alignment identified 16,320 unique sequence tags/loci with ~30,000 
SNPs present on ~60% of the sequence tags. The 16,320 GBS tags were randomly spread 
throughout the 38 Mb genome. This preliminary analysis predicts 1 SNP marker every 3.9 Kb 
throughout the S. sclerotiorum genome. Preliminary BLAST analysis suggested these markers 
hit over 50% of the predicted genes within the genome. 
 
PM 2.5:  Identification and verification of candidate genes involved in Sclerotinia 
pathogenicity.   
 

• Development and maintenance of relevant natural and derived culture collections for use in 
phenotypic association. 
 

• Transcriptome profiling approaches for a variety of gene targets and high through put 
functional analyses. 

 
2.5.01.01 USDA scientists at Pullman WA conducted inoculation experiments under 
environmentally controlled growth conditions. Three-week old lentil and chickpea plants were 
inoculated with actively growing mycelium of S. sclerotiorum. The tissue at the interface of 
disease lesions and healthy tissue were harvested at three different times after inoculation (24, 48 
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and 72 hours post inoculation). Total RNAs were isolated using the TRIzol method from freshly 
harvested plant tissues. The mRNAs were isolated using a GenElute™ mRNA Miniprep Kit 
(Sigma) from the total RNAs, and sequenced with the 454 GS FLX Titanium pyrosequencing. 
 

• Promoters useful for expressing RNAi constructs during infection (e.g., plant-inducible 
promoters). 

  
• Inventory of genes potentially involved in pathogenesis recovered from ATMT random 

mutagenesis and transcriptome profiling. 
 

• Functional verification of candidate genes using a systems biology approach to gene 
silencing and quantitative expression assays.  
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Gene Discovery & Phenotypic Association 
 
Goal 3: Develop molecular technologies that facilitate breeding progress 
 
PM 3.1 Develop useful molecular marker resources for QTL Discovery.   
 

• Identification of a core set of informative markers for deployment in genotyping systems 
suitable for use in breeding programs 

3.2.18.01 USDA ARS scientists at Fargo ND transferred Sclerotinia stalk rot resistance from four 
wild   annual Helianthus species (H. argophyllus, H. debilis, H. praecox, and H. petiolaris) into 
cultivated sunflower. Resistant plants were selected from 21 accessions of four wild species, and 
were first crossed in 2009 to a nuclear male-sterile line (NMS) HA 89, susceptible to Sclerotinia stalk 
rot. Selected F1 resistant plants were backcrossed to HA 458 (a susceptible elite cultivar), and the 
resistant BC1s were again backcrossed to HA 89 to produce BC2s followed by self-pollination to 
advance to BC2F2. Sclerotinia stalk rot tests were applied in each generation in the greenhouse 
trials to narrow down population size. 4,288 BC2F2 plants derived from eight original resistant 
accessions of the four wild species and advanced 302 BC2F3 families from the selected resistant 
individuals were screened in 2011. The 302 BC2F3 families were screened for stalk rot resistance in 
field and/or greenhouse trials in 2012 and 2013. The resistant individuals from those families with 
resistance similar or superior to the resistant checks Croplan 305 and HA 441 were selected to 
advance BC2F4 lines. One BC2F4 line with good seed set and other traits from each of the best 
BC2F3 families were further evaluated for stalk rot resistance. Overall, 28 resistant BC2F4 lines 
were obtained by combining field and greenhouse data, out of which, 12 derived from H. petiolaris 
PI 435843, H. argophyllus PI 494573, and H. praecox PI 468853 were tested in field trials at two 
locations both in 2012 and 2013, and were identified with higher levels of resistance. Whole genome 
scans of the resistant line 11-275-037 from H. argophyllus PI 494573 with 256 polymorphic SSR 
markers revealed the presence of introgressed chromosome segments located on linkage groups 8, 
9, 10, and 11, indicating some of these chromosomes probably associate with stalk rot resistance. 
Novel QTL for stalk rot resistance derived from H. argophyllus were characterized with an advanced 
backcross (AB) population. 140 plants from 11 BC2F1 rows were advanced to the BC2F5 
generation by single-seed descent. 

• DNA markers that contribute to the annotation of the crop genomes 

3.1.06a.01 Scientists from North Dakota State University and DuPont Inc. evaluated the reaction of 
two doubled haploid lines, NEP32 and NEP63, to inoculations with S. sclerotiorum. The lines which 
are considered susceptible and resistant to S. sclerotiorum, respectively, were derived from Ames 
26628, a B. napus plant introduction. A 180 line F2 population from the DH lines was inoculated with 
S. sclerotiorum and DNA was extracted in greenhouse conditions. Within two weeks from 
inoculation 50% the lines were dead; the remaining F2 lines developed lesions of different sizes. 
Marker analyses using GAPIT and TASSEL revealed two SNP markers significantly associated with 
resistance to S. sclerotiorum. Of these, marker S4_14654875 was located in chromosome 4 (B. 
rapa genome) while marker S20_1260815 was ascribed to a scaffold that could not be anchored to 
any chromosome at this time. 44 mutants were generated in these genes (deleted or silenced). 
Pathogenicity trials are being conducted. 
 

• Allele specific DNA markers that can be used in pre-breeding for disease resistance  
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• Allele specific DNA markers that can be used in pre-breeding for quality traits 

 
• Allele specific DNA markers for yielding ability and other agronomic traits 

 
 
PM 3.2 Genetic and physical maps for Sclerotinia resistance.  
 

• Compilation of marker genotyping data for different mapping populations 
 

• Improved genetic maps for Sclerotinia resistance genes 
 
3.2.16.01 Scientists at USDA-ARS Prosser WA, Oregon State University and North Dakota State 
University use SNPs from RNA-seq in Introgression mapping of WM7.1 QTL. The number of SNPs 
within each 500kb window defined the introgressions from the donor parent. In this case, it is the 
WM7.1. Significant introgression also was observed from Pv08 and Pv11. The majority of the 
introgressions are located on Pv07 in the range of 1.0 to 8.3 Mb. All totaled, 314 genes resided in 
the three introgressed regions, and among these, 119 are located in the Pv07 WM7.1 region. A 
refined WM7.1 QTL map, with eight polymorphic indel markers, narrowed the gene search within the 
WM7.1 region to 4.5 cM. 
 

• A consensus genetic/QTL map for Sclerotinia resistance genes 
 

• Core sets of markers for discovery of candidate genes for disease resistance 
 

• Core sets of markers for discovery of candidate genes for quality traits 
 

• Core sets of markers for discovery of candidate genes for agronomic traits 
 

• Placement of candidate genes on the consensus genetic map 
 
3.3 Characterize gene models associated with pathology and resistance. 
 

• A standardized methodology for annotation of maps among specified crop species. 
 

• Transcriptomic, proteomic and metabolomic annotation of genome sequences in QTL 
associate with resistance to Sclerotinia diseases 

3.3.16.01 Scientists at USDA-ARS Prosser WA, Oregon State University and North Dakota State 
University used RNA-seq to identify candidate genes at the WM7.1 QTL locus in resistant and 
susceptible lines. Differentially expressed RNA revealed 179 up-regulated genes in the susceptible 
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line and 9 up-regulated genes in the resistant line. 

• Characterization of candidate genes involved in biological mechanisms for resistance, such 
as: oxalic acid 

3.3.04.01 Scientists from USDA-ARS Urbana IL and Agriculture and Agri-Food Canada generated 
gene expression data from soybean infected with Sclerotinia or OA. This expression data identified 
Sclerotinia responsive genes closely associated with defense. Differential expression suggests that 
PR5 is a good candidate defense gene that is located close to a QTL for Sclerotinia resistance. 

3.3.16.02 Scientists at USDA-ARS Prosser WA, Oregon State University and North Dakota State 
University Identified 168 genes within WM7.1 region of Pv07. Among these genes is 
Phvul.007G067300 which is overexpressed in the resistance response. This gene is a U-Box 
ubiquitin ligase protein, and its homology in Arabidopsis is associated with the disease response to 
Pseudomonas infection. These proteins target invading proteins for destruction, a mechanism that 
halts the effects of invading organisms. Another U-box ubiquitin ligase (Phvul.008g099500) is 
located within the WM8.3 QTL, and also was up-regulated in white mold resistance response. 
Ubiquitin ligases could play an important role in the white mold resistance response. 
 

• A commodity-based gene atlas with a comprehensive list of all expressed genes, 
alternative splice products, identification of co-regulated genes and gene networks. 

 
• Identification of specific genes within QTL of importance to Sclerotinia-host interactions 

 
 

3.4 Genome mapping and allelic analysis through Genome-Wide Association Studies. 
 

• High resolution exome maps of genomic regions that harbor QTL for Sclerotinia resistance 
 

• Identification of specific alleles in gene families that mediate Sclerotinia resistance. 
 

• GWAS studies of the trait associated with phenotypic variation in disease resistance. 

3.4.07.01  USDA ARS scientists at Urbana IL evaluated highly resistant accessions of G. 
canescens, G. clandestina, G. latifolia, and G. tabacina. Reciprocal crosses were performed 
between resistant and susceptible accessions of G. latifolia to produce F2 plants and recombinant 
inbred lines (RILs). Single nucleotide polymorphisms (SNPs) were identified by sequencing reduced 
representations of genomic DNAs of resistant and susceptible accessions of G. latifolia. Many of the 
SNP markers that aligned to soybean chromosomes mapped in similar orders in the two species. 
186 F2 individuals were evaluated for segregation of sensitivity to oxalic acid and over 2,500 
genotyping-by-sequencing (GBS) markers identified a locus for oxalic acid sensitivity on G. latifolia 
linkage group 17. RIL population development was continued, and a draft genome sequence was 
assembled for G. latifolia. Additional loci for oxalic acid sensitivity were found on G. latifolia linkage 
groups 2, 10, and 17, which corresponded to soybean chromosomes 19, 10, and 17, respectively. 
Comparison of SNP data and the draft genome sequence G. latifolia showed that the 3.4-cM genetic 
interval containing the locus on chromosome 2 represented a region of 2.7 Mbp that contained at 
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least 68 predicted genes. An F5 RIL population was analyzed for segregation of over 5,000 GBS 
markers and evaluations of the population for sensitivity to oxalic acid and inoculation with S. 
sclerotiorum were initiated. These experiments identified an accession of Glycine latifolia with high 
levels of resistance to Sclerotinia stem rot and produced the genetic and molecular tools for 
identification and characterization of genomic regions responsible for resistance to infection by S. 
sclerotiorum in a perennial wild relative of soybean. 

3.4.16.01 Scientists at USDA-ARS Prosser WA, Oregon State University and North Dakota State 
University conducted genome-wide association mapping (GWAS) for identification of white mold 
tolerance QTL in the Dry bean WM8.3 region. 13 indel markers that co-segregated in our mapping 
population were physically mapped onto the version 1.0 of the common bean genome, over a 
distance of 41 Mb. The reason for this large physical distance is that the most of these markers are 
located in the low recombination heterochromatic region of the chromosome. This QTL may have 
~1000 genes.  

3.4.16.02 Scientists at USDA-ARS Prosser WA, Oregon State University and North Dakota State 
University conducted a GWAS analysis of the Mesoamerican Diversity Panel (MDP; n=252, 
consisting of pinto, navy, black, great northern, pink, and small red market cultivars) under field 
conditions in 2013 to discover the genetic factors underlying disease resistance. Major association 
peaks were discovered on chromosomes Pv01, Pv02, Pv03, Pv04, Pv06, and Pv08. The GWAS 
peaks correspond with a number of previously defined QTL: WM1.1, WM2.1, WM5.1 or WM5.2, and 
WM8.1 or WM8.3. A multi-locus mixed model (MLMM) analysis was applied to gain a good estimate 
of the number and location of factors affecting the field reaction to white mold. 

• Haplotype maps correlated with genetic variation for resistance to Sclerotinia diseases. 

3.4.16.03 Scientists at USDA-ARS Prosser WA, Oregon State University and North Dakota State 
University conducted GWAS on 131 snap bean lines. A wide range in variation for resistance was 
observed with some lines showing high levels of field resistance. The 131 genotypes were 
genotyped with the 6998 SNP array, and a GWAS analysis was performed for white mold severity, 
white mold incidence, and white mold geometric mean. Association peaks were detected on Pv02, 
Pv09, and Pv10 for all three traits Coordinates of the Pv02 peak at 3.2 Mb places it near the WM2.1 
QTL. The other Pv02 peak located at ~34.8 Mb is physically near the WM2.3 QTL. 

• Allele specific markers and high-throughput screening methods for pyramiding genes that 
mediate resistance to Sclerotinia diseases.    

PM 3.5 Develop plant germplasm with improved resistance using biotechnology and other 
novel genetic methods. 
 

• An inventory of validated disease resistance genes, promoters, and constructs for 
transformation into crop germplasm. 

 
• Discovery of transcription factors and elements of gene regulation that mediate expression 

of disease resistance genes. 
 

• Functional tests in model plants to determine potential importance of candidate defense 
genes 
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3.5.20.01  Scientists at the University of Florida identified an Arabidopsis thaliana gene that is 
hyper-susceptible to S. sclerotiorum (HSS1) and the pathogen encoded oxalate decarboxylase1 
(ODC1) protein. The HSS1 gene was cloned. 130 F2 plants with a homozygous hss1 were used in 
linkage analysis. The HSS1 gene was positioned between the molecular markers Ciw5 and Ciw6 on 
Chromosome 4. Further recombination analysis of 1479 F2 mutant plants placed the HSS1 gene 
between markers m602 and m268. Candidate genes were sequenced and several mutations were 
found. The hss1 mutation is being confirmed by cloning the candidate wild-type genes in this region 
in plant expression vectors. Genetic complementation constructs were developed to characterize 
candidates for the HSS1 gene.  
 
3.5.20.02 Scientists at the University of Florida performed a microarray experiment to monitor S. 
sclerotiorum-induced transcriptome changes in hss1 and wild-type plants. Microarray data indicated 
that the hss1 mutation significantly shifted S. sclerotiorum-induced transcriptome changes in the 
host. Compared with the wild type, 102, 1107, 642, and 1322 genes were up regulated in hss1, 
respectively, and 391, 994, 279, and 1239 genes were down-regulated. Analysis of the gene 
annotations revealed that induction of a group of ethylene (ET) pathway genes (ORA59, PDF1.2, 
CHIB, PR4/HEL) was significantly inhibited in the hss1 mutant, suggesting that the HSS1 gene may 
play an important role in ET signaling. Moreover, the glucosinolate biosynthetic genes CYP79B2 
and CYP79B3 were also down-regulated in hss1, indicating that HSS1 may regulate glucosinolate 
biosynthesis as well. 
 
3.5.04.01   Scientists from USDA-ARS Urbana IL and Agriculture and Agri-Food Canada used 
soybean transformation to validate candidate defense-associated genes by means of silencing. 
Three RNAi genes were delivered to soybean in multiple experiments. Data show that G-protein 
coupled receptor (GPCR), is enhanced susceptibility when GPCR is silenced, indicating that this 
gene is playing a role in defense when active. Similarly, 14-3-3 RNAi transgenic plants show 
enhanced susceptibility. T2 seed carrying RNAi of the matrix metalloproteinase (MMP) now enables 
infection assays to evaluate this gene for its role in defense. These genes or paralogs are initial 
pieces of the metabolic network for resistance. 

• Determination of the efficacy of transformed genes on defense control in crop germplasm. 

3.5.20.03 Scientists at the University of Florida cloned the S. sclerotiorum ODC1 gene into the T-
DNA vector pCAMBIA1300S and transformed Arabidopsis plants with Agrobacteria carrying the T-
DNA vector.  

3.5.09.01  Scientists at The Ohio State University increased regeneration efficiency of transformed 
RHA280 plantlets up to 70% of cotyledon explants producing more than 40 shoots each. An 
alternative shoot induction protocol using primary leaves from RHA280 seedlings was developed 
following seed germination on cytokinin-containing medium. Primary leaves became responsive to 
the shoot induction medium used for shoot induction in cotyledons. Adventitious shoots from leaves 
were successfully elongated and plantlets were recovered following micro grafting. Transgenic 
shoots obtained from leaves show less long-term potential for improvement. Use of cotyledon 
tissue, cultured in a liquid cytokinin-containing medium was more responsive to Sonication Assisted 
Agrobacterium-mediated Transformation (SAAT) than cotyledons that were not pre-cultured with 
cytokinin. Multiple transgenic shoots and shoot clusters with GFP expression were obtained using 
SAAT. The percentage of explants with transgenic shoots ranged from 3% to 27%. Results suggest 
that early selection after transformation yields more consistent transgenic shoots than our 
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previously-used selection scheme. 
 

• Effective use of genome editing technologies to genetically modify genomic regions in ways 
that enhance resistance to Sclerotinia diseases 

 
• Development and testing of agronomic crop germplasm transformed with putative anti-

fungal genes or RNA interfering constructs for reaction to white mold.  
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Disease Management & Crop Production  
 
Goal 4:  Broaden knowledge of Sclerotinia sclerotiorum epidemiology and improve disease 
management strategies  
 
  
PM 4.1:  Optimize fungicide application programs.  

• A region-wide collection of S. sclerotiorum isolates to establish a baseline of fungicide 
sensitivity  

4.1.01.01 USDA Scientists at Pullman WA investigated fungal genetic resistance mechanisms to 
various fungicides in S. sclerotiorum isolates that had not been exposed to fungicides. Mutations in 
genes that encode: 1) β-tubulin renders pathogen resistance to benzimidazole fungicides; 2) 
mitochondrial cytochrome b confers resistance to strobilurin (QoI) fungicides; 3) 14α-demethylase 
(CYP51) confers resistance to DMI fungicides; 4) histidine kinase or cAMP-dependent protein 
kinase (ubc1) confers resistance to dicarboximide fungicides. High levels of resistance in S. 
sclerotiorum to several classes of fungicides were reported in China. Significant difference in 
sensitivity among US isolates was found to three fungicides (Iprodione, Benzoyl and Fluanzinam). 

• Identification of the economic return of fungicide applications relative to timing of disease 
onset 

4.1.24.03 Scientists at North Dakota State University and the University of Nebraska achieved 
intermediate levels of disease that normally would be ideal for differentiating fungicide efficacy, 
fungicides did not show efficacy against Sclerotinia head rot. Most of the fungicides that were 
evaluated have efficacy against Sclerotinia on other crops, and the poor results observed in the 
sunflower head rot trials are likely due to the difficulty of achieving satisfactory fungicide coverage on 
the front of the heads with the available application technology. 

• Updated management guides for growers on use of fungicides for disease management 

4.1.24.01 Scientists at North Dakota State University and the University of Nebraska facilitated 
management of Sclerotinia head rot of sunflowers through screening hybrids for resistance and 
evaluating fungicides for efficacy. Screening nurseries were highly successful at differentiating the 
relative susceptibility of commercial sunflower hybrids and breeding lines to Sclerotinia head rot. At 
Carrington, ND, eight of 30 entries, including one confectionary hybrid, were significantly more 
resistant to head rot than the susceptible checks. Results were significantly correlated across the 
Carrington, Landon, and Oakes screening locations. 
 

• New spraying technologies that improve fungicide performance by enhancing canopy 
penetration, plant coverage, and fungicide deposition  
 

• Determine most effective timing of fungicide applications relative to canopy closure after 
blooming. 

4.1.24.02 Scientists at North Dakota State University and the University of Nebraska evaluated the 
susceptibility of sunflowers to Sclerotinia head rot during and after bloom. There was a sharp drop in 



22 

 

susceptibility to head rot between the R5 (bloom) and R6 (flowering complete, ray flowers wilted) 
growth stages in both susceptible and partially resistant hybrids. Only inoculations at R5 resulted in 
a significant increase in Sclerotinia head rot relative to the non-inoculated control. Other inoculation 
timing studies showed susceptibility to head rot increased as bloom progressed, with sunflowers 
significantly more susceptible to head rot in the last third of bloom (R5.7 to R5.9; 70 to 90% of the 
disk flowers in bloom or having completed bloom) than in the first third of bloom (R5.1 to R5.3). 
These results suggest that inoculations be conducted at the same stage of bloom and that no 
inoculations be conducted after bloom. 

PM 4.2:  Develop bio-control alternatives for disease management.  
 

• Identification of application strategies that will maximize the efficacy of currently available 
bio control agents for control of S. sclerotiorum 
 

• Identification of novel antagonists of S. sclerotiorum and assessment of their efficacy in 
field trials 
 

• Updated management guides for growers on use of bio fungicides for disease 
management  

 
PM 4.3:  Develop disease-warning systems to optimize management of S. sclerotiorum.   
 

• Models that calculate risk of disease development as functions of leaf wetness duration 
and temperature, and risk of apothecia formation as function of soil moisture conditions 
 

• Effect of tillage practices on Sclerotinia survival; 
 

• Economic loss models based on plant density at time of disease onset 
 

• Define risk levels to guide crop-specific fungicide selection decisions 
 
PM 4.4:  Optimize cultural practices for disease management.  
 

• Variety selection using disease reaction measured as the amount of sclerotia produced  
 

• Collate disease management information and distribute to growers through print media, 
internet postings and extension publications  
 

• Epidemiological information on disease development (spatial distribution, remote sensing, 
etc.) that could be used to support precision agriculture programs for disease control.  
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2013 Sclerotinia Research Projects

Project PI Cooperator Commodity

Discovery and use of novel sources of 
resistance to head rot and stalk rot in 
cultivated sunflower & wild Helianthus

Gulya ARS Sunflower

White mold resistance-QTL: Identification, 
interactions & fine mapping in common bean Miklas ARS Dry Bean

Improved white mold resistance in dry and 
snap beans through multi-site screening and 
pathogen characterization throughout major 
production areas

Steadman NE Dry Bean

Transferring Sclerotinia resistance genes 
from wild Helianthus species into cultivated 
sunflower

Jan ARS Sunflower

Deployment of novel sources of Sclerotinia 
resistance and tools for breeding resistance 
in sunflower

Qi ARS Sunflower

Pyramiding QTL for white mold resistance 
into Mesoamerican beans Kelly MI Dry Bean

Enhancing soybean for resistance to 
Sclerotinia stem rot Wang MI Soybean
Synergistic enhancement of resistance to 
Sclerotinia sclerotiroum Rollins FL All

High density genotyping of a diverse 
population of Sclerotinia sclerotiroum Nelson ND All

Identifying and verifying genes for defense 
to Sclerotinia Clough ARS Soybean

Identification of resistance and pathogenicity 
genes associated with Sclerotinia 
sclerotiorum  Infection using next-generation 
sequencing

del Rio ND Canola

Fine mapping of loci for resistance to 
Sclerotinia stem rot in the wild perennial 
Glycine latifolia

Domier ARS Soybean

Characterization and validation of two 
distince mechanizsms for partial resistance 
to Slcerotinia sclerotiroum in pea

McPhee ND Pea & Lentil

Use of a transformation system in sunflower 
for Slcerotinia resistance studies Finer OH Sunflower

Expression profiling of the pea-Sclerotinia 
sclerotiorum interaction for genomics 
assisted breeding

Chilvers MI Pea & Lentil

Development and evaluation of canola 
breeding populations for resistance to 
Sclerotinia sclerotiorum

del Rio ND Canola

Characterization of growth, pathogenicity, 
and apothecial development of Sclerotinia 
sclerotiorum  isolates from different 
geographic regions in contrasting 
temperature regimes

Hartman ARS Pathogen

Facilitating management of Sclerotinia head 
rot of sunflowers through screening sybrids 
for resistance and evaluating fungicides for 
efficacy

Wunsch ND Sunflower

Comparative transcriptomics of Sclerotinia 
sclerotiorum  infecting grain legumes for 
genomics assisted breeding

Chen ARS Pea & Lentil

Preventing development of fungicide 
resistance in Sclerotinia sclerotiorum by 
investigating resistance mechanisms

Chen ARS Pea & Lentil

Managing Sclerotinia stem rot of canola with 
fungicides del Rio ND Canola

 


